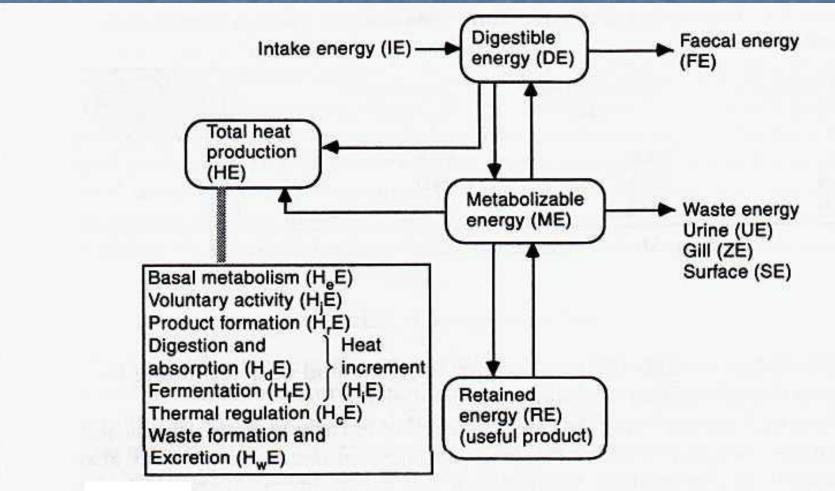
Bioenergetics


PhD. student Dr. A. Y. Al-Dubakel.

3- Energy Forms 2

Energy Terms (cont.)

Total heat production (HE): energy lost in the form of heat heat lost is sourced from metabolism, thus, HE is an estimate of metabolic rate measured by temperature change (calorimetry) or oxygen consumption rate divided into a number of constituents as per energy flow diagram ->->

Energy Flow Diagram

Energy flow in an aquatic organism.

Energy Terms (total heat production)

- Basic metabolic rate (H_aE): heat energy released from cellular activity, respiration, blood circulation, etc.
- heat of activity (H_jE): heat produced by muscular activity (locomotion, maintaining position in water)
- heat of thermal regulation (H_cE): heat produced to maintain body temp (above zone of thermal neutrality)
- heat of waste formation (H_wE): heat associated with production of waste products
- specific dynamic action (H_iE): increase in heat production following consumption of feed (result of metab), varies with energy content of food, especially protein

Energy Utilization

Energy intake is divided among all energyrequiring processes Magnitude of each depends on quantity of intake plus animal's ability to digest and utilize that energy Can vary by feeding mode: carnivorous vs. herbivorous

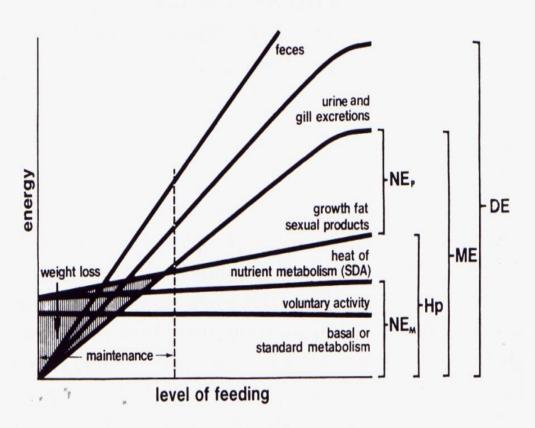


FIG. 1.2

Energy intake and distribution among energy-requiring processes. (From Smith, In "Studies on the Energy Metabolism of Cultured Fishes", 1976 Thesis, Cornell University.)

From Halver (page 7)

Focus: Gross Energy

Energy content of a substance is typically determined by completely oxidizing (burning) the compound to carbon dioxide, water and other gases the amount of energy given off is measured and known as gross energy gross energy (GE) is measured by a device known as a bomb calorimeter other devices: gradient chamber, infra red

detector

Gross Energy of Feedstuffs

Table 2.2. GROSS ENERGY VALUES FOR SOURCES OF CARBOHYDRATES, FATS, AND PROTEINS DETERMINED BY BOMB COLORIMETER

Substrate	kcal/
Glucose Cornstarch	3.77 4.21
Triglyceride: Beef fat	9.44 9.28
Soybean oil Casein	5.84

Gross Energy of Feedstuffs

Fats (triglycerides) have about twice the GE as carbohydrates

this is because of the relative amounts of oxygen, hydrogen and carbon in the compounds

energy is derived from the heat of combustion of these elements: C= 8 kcal/g, H= 34.5, etc.

typical heat of combustion of fat is 9.45 kcal/g, protein is 5.45, COH is 3.75

Available Energy

Gross energy only represents the energy present in dry matter (DM)

it is not a measurement of its energy value to the consuming animal

the difference between gross energy and energy available to the animal varies greatly for different foodstuffs

the key factor to know is how digestible the food item is digestible energy also varies by species

Digestible Energy

The amount of energy available to an animal from a feedstuff is known as its digestible energy (DE)

DE is defined as the difference between the gross energy of the feed item consumed (IE) and the energy lost in the feces (FE) two methods of determination: direct or indirect

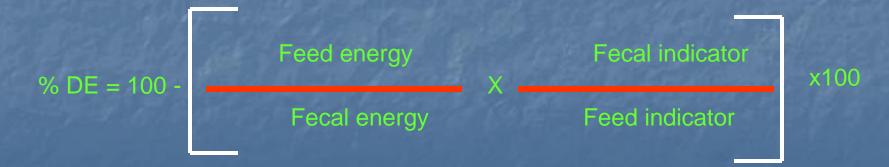
by the direct method, all feed items consumed and feces excreted are measured

Digestible Energy

The indirect method involves only collecting a sample of the feed and feces

digestion coefficients are calculated on the basis of ratios of energy to indicator in the feed and feces

indicator?: an inert indigestible compound added to the feed


indicators: natural (fiber, ash) or synthetic (chromic oxide)

DE Calculations

Direct Method

Indirect Method

Metabolizable Energy

This is even more detailed distinction of energy availability

it represents DE minus energy lost from the body through gill and urinary wastes much more difficult to determine must collect all urinary wastes while fish is in water!!!

Intake energy - (E lost in feces, urine, gills) x 100

Feed energy

Metabolizable Energy

- Use of ME vs DE would allow for a much more absolute evaluation of the dietary energy metabolized by tissues
- however, ME offers little advantage over DE because most energy is used for digestion in fish energy losses in fish through urine and gills does not vary much by feedstuff
- fecal energy loss is more important
- forcing a fish to eat involuntarily is not a good representation of actual energy processes

Energy Ratios for Rainbow Trout

Table 2.3. RATIOS OF DIGESTIBLE TO GROSS ENERGY (DE/IE) AND METABOLIZABLE TO DIGESTIBLE ENERGY (ME/DE) FOR RAINBOW TROUT

Feedstuff	ĎE/IE	ME/DE
Anchovy fish meal	.91	.94
Whitefish meal Soybean meal, without	.84	.94
hulls	.79	.94
Meat meal Cottonseed meal,	.71	.95
without hulls	.63	.93
Wheat middlings	.40	.91

Source: Calculated from values in NRC (1981).